Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Heliyon ; 10(6): e28158, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38524576

ABSTRACT

Objective: (s): Considering the poor prognosis of ischemic heart disease and the diminished effectiveness of cardioprotective interventions in the elderly, it becomes necessary to investigate the interaction of aging with protection during myocardial ischemia/reperfusion injury (IRI). This study was conducted to assess the impact of mitoquinone (MitoQ) and alpha-lipoic acid (ALA) preconditioning on cardioprotection following IRI in aged rats. Methods: Fifty aged male Wistar rats (22-24 months old) were divided into five groups including Sham, IR, and treatment groups receiving ALA and/or MitoQ. Treatment groups were received 100 mg/kg/day ALA by oral gavage and/or 10 mg/kg/day MitoQ by intraperitoneal injection for 14 consecutive days. An in vivo model of myocardial IRI was established through ligation of coronary artery for 30 min and it's reopening for 24 h. The left ventricles were removed at the end of reperfusion to assess oxidative stress indicators, mitochondrial function, and expression of mitochondrial dynamic genes. Myocardial infarct size (IS), hemodynamic parameters, and serum lactate dehydrogenase (LDH) level were also measured. Results: Combination of MitoQ and ALA reduced oxidative stress, LDH level, and IS in aged hearts subjected to IRI. It also enhanced mitochondrial function and upregulated Mfn1, Mfn2, and Foxo1 and downregulated Drp1 and Fis1 gene expression. Co-administration of MitoQ and ALA partially restored IRI-induced hemodynamic changes to normal state. In all measured parameters, the effect of combined treatment was greater than monotherapies. Conclusion: The combination therapy of MitoQ and ALA demonstrated considerable therapeutic potential in protecting the aging heart against IRI by improving oxidative stress, mitochondrial function, and dynamics in aged rats.

2.
Exp Physiol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478872

ABSTRACT

Ischaemic heart diseases (IHD) are among the major causes of mortality in the elderly population. Although timely reperfusion is a common treatment for IHD, it causes additional damage to the ischaemic myocardium known as ischaemia-reperfusion (IR) injury. Considering the importance of preventing reperfusion injuries, we aimed to examine the combination effect of mitochondrial transplantation (MT) and coenzyme Q10 (CoQ10 ) in myocardial IR injury of aged male rats. Seventy-two aged male Wistar rats were randomly divided into six groups: Sham, IR, CoQ10 , MT, combination therapy (MT + CoQ10 ) and vehicle. Myocardial IR injury was established by occlusion of the left anterior descending coronary artery followed by reopening. Young male Wistar rats were used as mitochondria donors. Isolated mitochondria were injected intraventricularly (500 µL of a respiration buffer containing 6 × 106 ± 5 × 105  mitochondria/mL) in MT-receiving groups at the onset of reperfusion. CoQ10  (10 mg/kg/day) was injected intraperitoneally for 2 weeks before IR induction. Twenty-four hours after reperfusion, haemodynamic parameters, myocardial infarct size (IS), lactate dehydrogenase (LDH) release and cardiac mitochondrial function (mitochondrial reactive oxygen species (ROS) generation and membrane potential) were measured. The combination of MT and CoQ10  improved haemodynamic index changes and reduced IS and LDH release (P < 0.05). It also decreased mitochondrial ROS generation and increased membrane potential (P < 0.05). CoQ10 also showed a significant cardioprotective effect. Combination therapy displayed greater cardioprotective effects than single treatments. This study revealed that MT and CoQ10 combination treatment can be considered as a promising cardioprotective strategy to reduce myocardial IR injury in ageing, in part by restoring mitochondrial function.

3.
Exp Gerontol ; 189: 112402, 2024 May.
Article in English | MEDLINE | ID: mdl-38484905

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of combined alpha-lipoic acid (ALA) and mitoquinone (Mito Q) supplementation on cardiac function and the underlying mechanisms in aged rats with myocardial infarction (MI). METHODS: The aged rats underwent left anterior descending artery (LADA) occlusion for 30 min, followed by reperfusion for 24 h. ALA (100 mg/kg, gavage) and Mito Q (10 mg/kg, IP) were administered daily for two weeks before ischemia. Cardiac function, inflammatory, and apoptotic markers were evaluated 24 h after ischemia. RESULTS: The results of this study indicated that the administration of the combination of ALA and Mito Q significantly improved cardiac function. This improvement was linked to a reduction in the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß (P < 0.001) and apoptotic markers (Bax, caspase-3, and Cyt-c), as well as a decrease in the percentage of TUNEL-positive cells (P < 0.001). CONCLUSION: The study revealed that combined intervention synergistically mitigated cardiac dysfunction by suppressing inflammatory and apoptotic pathways in aged rats with MI. Further research is needed to validate the potential of ALA and Mito Q as therapeutic options for elderly people at risk of heart attacks.


Subject(s)
Myocardial Infarction , Organophosphorus Compounds , Thioctic Acid , Ubiquinone/analogs & derivatives , Humans , Aged , Rats , Animals , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Rats, Sprague-Dawley , Myocardial Infarction/drug therapy , Dietary Supplements , Apoptosis
4.
Can J Physiol Pharmacol ; 101(12): 682-691, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37523770

ABSTRACT

This work evaluated the combined effects of alpha-lipoic acid (ALA) and ischemic postconditioning (Post) on myocardial infarction and cell death in rats with chronic type-II diabetes following ischemia/reperfusion injury. The rats received a high-fat diet and were given one intraperitoneal injection of 35 mg/kg streptozotocin to induce chronic diabetes. They were then pretreated with ALA (100 mg/kg/day, orally) for 5 weeks before undergoing ischemia/reperfusion (I/R) insult. The hearts experienced 35 min regional ischemia through ligating the left anterior descending coronary artery, followed by 60 min reperfusion. The Post protocol involved 6 cycles of a 10/10 s algorithm, applied during the early stage of reperfusion. The use of Post alone did not significantly alter lactate dehydrogenase and infarct size levels, while ALA showed positive effects. Similar findings were observed for apoptotic changes with single treatments. However, the concurrent administration of ALA and Post significantly reduced the protein expressions of Bax, Bax/Bcl2, and cleaved caspase-3 while increasing Bcl2 expression. Additionally, the histopathological findings of the combined therapy were superior to those of single treatments. The concomitant use of ALA and Post effectively inhibited apoptosis, leading to cardiac recovery after I/R injury in diabetic conditions. This strategy could improve outcomes for preserving diabetic hearts following I/R insults.


Subject(s)
Diabetes Mellitus, Experimental , Ischemic Postconditioning , Myocardial Infarction , Myocardial Reperfusion Injury , Thioctic Acid , Rats , Animals , Myocardium/metabolism , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Ischemic Postconditioning/methods , Diabetes Mellitus, Experimental/metabolism , bcl-2-Associated X Protein/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Infarction/metabolism , Apoptosis
5.
Mol Biol Rep ; 50(7): 5655-5665, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37199864

ABSTRACT

BACKGROUND: The aged myocardium experiences various forms of stress that cause reduction of its tolerance to injury induced by ischemia/reperfusion (I/R). Developing effective cardioprotective modalities to prevent the amplification of I/R injury during aging is under focus of investigation. Mesenchymal stem cells (MSCs) have the ability to regenerate infarcted myocardium mostly by producing multiple secretory factors. This study aimed to explore the mechanisms of mitoprotection by MSCs-conditioned medium (CM) in myocardial I/R injury of aged rats. METHODS: Male Wistar rats (n = 72, 400-450 g, 22-24 months old) were randomized into groups with/without I/R and/or MSCs-CM treatment. To establish myocardial I/R injury, the method of LAD occlusion and re-opening was employed. MSCs-CM was administered intramyocardially (150 µl) at the onset of reperfusion in recipient group. After 24 h reperfusion, myocardial infarct size, LDH level, mitochondrial functional endpoints, expression of mitochondrial biogenesis-associated genes, and the levels of pro-inflammatory cytokines were evaluated. After 28 days reperfusion, echocardiographic assessment of cardiac function was performed. RESULTS: MSCs-CM treatment improved myocardial function and decreased infarct size and LDH level in aged I/R rats (P < .05 to P < .001). It also decreased mitochondrial ROS formation, enhanced mitochondrial membrane potential and ATP content, upregulated mitochondrial biogenesis-related genes including SIRT-1, PGC-1α, and NRF-2, and lessened TNF-α, IL-1ß, and IL-6 levels (P < .05 to P < .01). CONCLUSIONS: MSCs-CM treatment attenuated myocardial I/R injury in aged rats, in part by improving mitochondrial function and biogenesis and restraining inflammatory reaction. the upregulation of SIRT-1/PGC-1α/NRF-2 profiles is a possible target for the mitoprotective effects of MSCs-CM following I/R injury during aging.


Subject(s)
Mesenchymal Stem Cells , Myocardial Infarction , Myocardial Reperfusion Injury , Reperfusion Injury , Rats , Male , Animals , Myocardial Reperfusion Injury/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Rats, Wistar , Myocardial Infarction/therapy , Myocardial Infarction/metabolism , Reperfusion Injury/metabolism , Mesenchymal Stem Cells/metabolism
6.
J Res Med Sci ; 28: 35, 2023.
Article in English | MEDLINE | ID: mdl-37213461

ABSTRACT

Background: Application of doxorubicin (DOX) in cancer patients is limited due to its dose-dependent toxicity to nontarget tissues such as testis and subsequent infertility. Due to limitation of our knowledge about the mechanisms of DOX toxicity in the reproductive system, reduction of DOX-induced testicular toxicity remains an actual and primary clinical challenge. Considering the potentials of troxerutin (TXR) in generating a protective phenotype in many tissues, we aimed to examine the effect of TXR on DOX-induced testicular toxicity by evaluating the histological changes and the expression of mitochondrial biogenesis genes and microRNA-140 (miR-140). Materials and Methods: Twenty-four adult male Wistar rats (250-300 g) were divided in groups with/without DOX and/or TXR. DOX was injected intraperitoneally at 6 consecutive doses over 12 days (cumulative dose: 12 mg/kg). TXR (150 mg/kg/day; orally) was administered for 4 weeks before DOX challenge. One week after the last injection of DOX, testicular histopathological changes, spermatogenesis activity, and expression of mitochondrial biogenesis genes and miR-140 were determined. Results: DOX challenge significantly increased testicular histopathological changes, decreased testicular expression profiles of sirtuin 1 (SIRT-1) and nuclear respiratory factor-2 (NRF-2), and increased expression of miR-140 (P < 0.05 to P < 0.01). Pretreatment of DOX-received rats with TXR significantly reversed testicular histopathological changes, spermatogenesis activity index, and the expression levels of SIRT-1, peroxisome proliferator-activated receptor-γ coactivator 1-alpha (PGC-1α), NRF-2, and miR-140 (P < 0.05 to P < 0.01). Conclusion: Reduction of DOX-induced testicular toxicity following TXR pretreatment was associated with upregulation of SIRT-1/PGC-1α/NRF-2 profiles and better regulation of miR-140 expression. It seems that improving microRNA-mitochondrial biogenesis network can play a role in the beneficial effect of TXR on DOX-induced testicular toxicity.

7.
Naunyn Schmiedebergs Arch Pharmacol ; 396(8): 1701-1711, 2023 08.
Article in English | MEDLINE | ID: mdl-36808502

ABSTRACT

The prognosis of myocardial ischemia/reperfusion (I/R) injury is poor in elderly patients. Aging increases the susceptibility of the heart to cell death from I/R injury and prevents the optimal effectiveness of cardioprotective modalities. Since the interaction of aging with cardioprotection is multifactorial, combination therapy may overcome the above-mentioned burden through correcting various components of the injury. Here, we explored the effects of nicotinamide mononucleotide (NMN)/melatonin combination therapy on mitochondrial biogenesis and fission/fusion, autophagy, and microRNA-499 in the aged rat heart with reperfusion injury. Ex vivo model of myocardial I/R injury was established by coronary occlusion and re-opening in 30 aged male Wistar rats (400-450 g, 22-24 months old). NMN (100 mg/kg/48 h, intraperitoneally) was administered over 28 days before I/R, and melatonin (50 µM) was added to the perfusion solution at early reperfusion. CK-MB release and expression of mitochondrial biogenesis genes and proteins, mitochondrial fission/fusion proteins, autophagy genes, and microRNA-499 were assessed. NMN/melatonin combination therapy concomitantly decreased CK-MB release in aged reperfused hearts (P < .001). It also upregulated SIRT1/PGC-1α/Nrf1/TFAM profiles at both gene and protein levels, Mfn2 protein, and microRNA-499 expression, and downregulated Drp1 protein and Beclin1, LC3, and p62 genes (P < .05 to P < .001). The effect of combination therapy was greater than individual ones. Co-application of NMN/melatonin within the setting of I/R injury in the aged rat heart induced noticeable cardioprotection through modulation of a coordinated network including microRNA-499 expression along with mitochondrial biogenesis associated with SIRT1/PGC-1α/Nrf1/TFAM profiles, mitochondrial fission/fusion, and autophagy, therefore, appears to prevent the burden of myocardial I/R injury in elderly patients.


Subject(s)
Melatonin , MicroRNAs , Myocardial Reperfusion Injury , Reperfusion Injury , Rats , Animals , Male , Melatonin/pharmacology , Melatonin/therapeutic use , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Mononucleotide/therapeutic use , Sirtuin 1/genetics , Sirtuin 1/metabolism , Organelle Biogenesis , Rats, Wistar , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Autophagy , MicroRNAs/genetics
8.
Mol Biol Rep ; 50(4): 3525-3537, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36787055

ABSTRACT

BACKGROUND: The metabolic and intracellular abnormalities in aging and diabetes cause loss of cardioprotection by routine interventions against myocardial ischemia/reperfusion (I/R) injury. We aimed to evaluate the possible interaction of aging and type-2 diabetes mellitus with cardioprotection and the potential protective effect of a mitochondrial cocktail (melatonin/nicotinamide mononucleotide (NMN)/ubiquinol) on myocardial I/R injury in aged diabetic rats. METHODS: Male Wistar rats (n = 108, 22-24 months old, 400-450 g) received high-fat diet/low dose of streptozotocin to induce type-2 diabetes, then were randomized into 9 groups of 12 rats each with/without I/R and/or melatonin, NMN, and ubiquinol, alone or in dual or triple combinations. Myocardial I/R was induced by LAD occlusion for 30 min followed by 24 h reperfusion. NMN (100 mg/kg/48 h, intraperitoneally) was administered for 28 days before I/R operation. Melatonin (10 mg/kg, intraperitoneally) and/or ubiquinol (30 mg/kg, intravenously) were administered at early reperfusion. Finally, hemodynamic index changes, infarct size, CK-MB levels, mitochondrial functional endpoints, and expression of mitochondrial biogenesis genes (SIRT-1/PGC-1α/NRF-2/TFAM) were assessed. RESULTS: The solo and dual applications of melatonin, NMN, and ubiquinol did not exert remarkable cardioprotective impacts. However, the triple combination improved myocardial function and decreased infarct size and CK-MB levels following myocardial I/R (P < .05 to P < .01). It also improved mitochondrial function and restored mitochondrial biogenesis genes (P < .01). CONCLUSIONS: Combination therapy with melatonin, NMN, and ubiquinol exerted significant cardioprotection and improved mitochondrial function and biogenesis via upregulation of SIRT-1/PGC-1α/NRF-2/TFAM profiles in aged diabetic rats and, thus, offers a promising strategy for providing noticeable cardioprotection against I/R injury also in aged diabetic patients.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Melatonin , Myocardial Ischemia , Myocardial Reperfusion Injury , Rats , Male , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Mononucleotide/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Rats, Wistar , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Diabetes Mellitus, Type 2/drug therapy , Infarction/drug therapy , Morbidity , Ischemia
9.
Mol Biol Rep ; 50(5): 3973-3983, 2023 May.
Article in English | MEDLINE | ID: mdl-36829080

ABSTRACT

BACKGROUND: Aging, as a recognized risk factor for ischemic heart disease, interferes with protective mechanisms and abolishes the optimal effectiveness of cardioprotective interventions, leading to the loss of cardioprotection following myocardial ischemia/reperfusion (I/R) injury. This study was designed to explore the possible interaction of aging with cardioprotection induced by combination therapy with coenzyme Q10 (CoQ10) and mitochondrial transplantation in myocardial I/R injury of aged rats. METHODS: Male Wistar rats (n = 72, 400-450 g, 22-24 months old) were randomized into groups with/without I/R and/or CoQ10 and mitochondrial transplantation, alone or in a combinational mode. An in vivo model of myocardial I/R injury was established by left anterior descending coronary artery occlusion and re-opening. Mitochondria were isolated from donor rats and injected intramyocardially (150 µl of the mitochondrial suspension containing 2 × 105±0.3 × 105 mitochondria) at the onset of reperfusion in recipient groups. CoQ10 (20 mg/kg/day) was injected intramuscularly for 7 days before I/R operation. Lastly, myocardial function, cTn-I level, expression of autophagy-associated proteins (Beclin1, p62, and LC3-II/LC3-I), and the levels of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) were assessed. RESULTS: Co-application of CoQ10 and mitotherapy concomitantly improved myocardial function and decreased cTn-I level in aged reperfused hearts (P < .001). This combination therapy also modulated autophagic activity and decreased pro-inflammatory cytokines (P < .01 to P < .001). This combinational approach induced noticeable cardioprotection in comparison with monotherapies-received groups. CONCLUSION: We found that combination of CoQ10 and mitochondrial transplantation attenuated myocardial I/R injury in aged rats, in part by modulating autophagy and inflammatory response, hence, appears to restore aging-related loss of cardioprotection in aged patients.


Subject(s)
Myocardial Reperfusion Injury , Reperfusion Injury , Rats , Male , Animals , Myocardial Reperfusion Injury/metabolism , Rats, Wistar , Mitochondria/metabolism , Autophagy , Cytokines
10.
Mol Biol Rep ; 50(3): 2147-2158, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36565415

ABSTRACT

BACKGROUND: Sepsis-induced myocardial dysfunction is associated with worse clinical outcomes and high mortality, but no effective therapeutic intervention has been explored, reinforcing the urgent need to develop innovative strategies. Mitochondrial dysfunction underlies the pathogenesis of sepsis-induced myocardial dysfunction. Herein, we assessed the effect of mitochondrial transplantation on sepsis-induced myocardial dysfunction in a rat model of cecal ligation and puncture (CLP)-induced sepsis. METHODS: Male Wistar rats (n = 80, 12 weeks old, 250-300 g) were divided into groups with/without CLP-induced sepsis receiving mitochondrial transplantation in single or two repetitive injections (1 h or 1 and 7 h post-CLP, respectively). Mitochondria were isolated from donor rats and injected intravenously (400 µl of mitochondrial suspension containing 7.5 × 106 mitochondria/ml of respiration buffer) in recipient groups. Twenty-four hours post-operation, LDH and cTn-I levels, mitochondrial functional endpoints, expression of mitochondrial biogenesis (SIRT-1 and PGC-1α) and fission/fusion (Drp1/Mfn1 and Mfn2) genes, and inflammatory cytokines (TNF-α, IL-1ß, and IL-6) levels were evaluated. Survival was tested over 72 h post-operation. RESULTS: Mitotherapy significantly improved 72-hours survival (P < .05) and decreased LDH and cTn-I levels (P < .01). It also restored mitochondrial function and expression of mitochondrial biogenesis and fusion genes, and decreased the expression of mitochondrial fission gene and the levels of inflammatory cytokines (P < .05 to P < .01). Mitotherapy with repetitive injections at 1 and 7 h post-CLP provided noticeable mitoprotection in comparison with the group receiving mitotherapy at single injection. CONCLUSION: Mitotherapy improved mitochondrial function, biogenesis, and dynamic associated with SIRT-1/PGC-1α network and suppressed inflammatory response in CLP-induced sepsis model, therefore, offers a promising strategy to overcome life-threatening sepsis challenge.


Subject(s)
Cardiomyopathies , Sepsis , Rats , Male , Animals , Rats, Wistar , Organelle Biogenesis , Mitochondria/metabolism , Cardiomyopathies/metabolism , Cytokines/metabolism , Sepsis/complications , Sepsis/therapy
11.
PLoS One ; 17(9): e0275019, 2022.
Article in English | MEDLINE | ID: mdl-36149935

ABSTRACT

BACKGROUND: A number of circulating micro-ribonucleic acids (miRNAs) have been introduced as convincing predictive determinants in a variety of cardiovascular diseases. This study aimed to evaluate some miRNAs' diagnostic and prognostic value in patients with acute heart failure (AHF). METHOD: Forty-four AHF patients were randomly selected from a tertiary heart center, and 44 healthy participants were included in the control group. Plasma levels of assessed miRNAs, including miR -1, -21, -23, and -423-5-p were measured in both groups. The patients were followed for one year, and several clinical outcomes, including in-hospital mortality, one-year mortality, and the number of readmissions, were recorded. RESULTS: An overall 88 plasma samples were evaluated. There was no significant difference in terms of demographic characteristics between the AHF and healthy groups. Our findings revealed that mean levels of miR-1, -21, -23, and -423-5-p in AHF patients were significantly higher than in the control group. Although all assessed miRNAs demonstrated high diagnostic potential, the highest sensitivity (77.2%) and specificity (97.7%) is related to miR-1 for the values above 1.22 (p = 0.001, AUC = 0.841; 95%CI, 0.751 to 946). Besides, the levels of miR-21 and -23 were significantly lower in patients with ischemia-induced HF. However, the follow-up data demonstrated no significant association between miRNAs and prognostic outcomes including in-hospital mortality, one-year mortality, and the number of readmissions. CONCLUSION: The result of our study demonstrated that miR-1, -21, -23, and -423-5-p can be taken into account as diagnostic aids for AHF. Nevertheless, there was no evidence supporting the efficacy of these miRNAs as prognostic factors in our study.


Subject(s)
Heart Failure , MicroRNAs , Acute Disease , Biomarkers , Heart Failure/diagnosis , Heart Failure/genetics , Humans , MicroRNAs/genetics , Prognosis
12.
Mol Biol Rep ; 49(11): 11081-11099, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36107370

ABSTRACT

INTRODUCTION:  Autophagy is known as a conserved mechanism in order to preserve cell survival under various stress conditions via maintaining cellular homeostasis. Although autophagy is active in the heart at baseline and plays a critical role in cell survival, inappropriate activation of autophagy following ischemia/reperfusion (I/R) injury leads to cell death. MAIN TEXT: The distinct functions of autophagy in myocardial I/R injury condition have been examined in numerous studies, however, contradicting results have been achieved in this field. These studies have documented that autophagy acts as a double-edged sword in myocardial I/R injury. Clarifying the exact role of autophagy in determining the health or death of cardiomyocytes under I/R injury is very helpful to achieve better cardioprotection in prospective clinical studies. Thus, autophagy may be an interesting target for the treatment or prevention of myocardial I/R injury. But before considering this matter, it is necessary to address the gaps in our knowledge about the complex role of autophagy in myocardial I/R injury. CONCLUSION: In this review, by providing updated data about the role of autophagy in the heart during ischemia and reperfusion, we tried to provide more insights in this context and encourage scientists to pay special attention towards manipulating autophagy as an intriguing and powerful approach in cardioprotection.


Subject(s)
Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/metabolism , Prospective Studies , Autophagy/genetics , Myocytes, Cardiac/metabolism , Cell Survival
13.
Mol Biol Rep ; 49(9): 8209-8218, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35842854

ABSTRACT

BACKGROUND: Clinical application of doxorubicin (DOX) is restricted due to its cardiotoxicity, reinforcing the significance of exploring new strategies to counteract DOX-induced cardiotoxicity. The present work aimed to investigate the ameliorative impact of combination therapy with nicotinamide mononucleotide (NMN) and troxerutin (TXR) on DOX-induced cardiotoxicity, with mitochondrial function/biogenesis and inflammatory response approach. METHODS: Male Wistar rats (n = 30, 250-300 g) were divided into groups with/without DOX and/or NMN and TXR, alone or in combination. Rats underwent 6 consecutive intraperitoneal injections of DOX (cumulative dose: 12 mg/kg). NMN (100 mg/kg/day; intraperitoneally) and/or TXR (150 mg/kg/day; orally) were administered for 28 days before DOX challenge. Seven days following the last injection of DOX, evaluation of cardiac histopathological changes, BNP and LDH levels, mitochondrial function (membrane potential, ROS generation, and ATP levels), expression of proteins involved in mitochondrial biogenesis (PGC-1α, NRF1, and TFAM), and inflammatory cytokines (TNF-α, IL-1ß, and IL-6) was performed. RESULTS: Combination of NMN and TXR significantly decreased the severity of histopathological damages, and BNP and LDH levels (P < 0.01 to P < 0.001). It also restored mitochondrial functional endpoints, and expression of proteins involved in mitochondrial biogenesis (P < 0.05 to P < 0.001), and decreased inflammatory cytokines (P < 0.01 to P < 0.001). The positive impacts of this combination therapy were more potent as compared to monotherapies. CONCLUSIONS: These findings shed new light on the understanding of additive properties of NMN/TXR combination therapy in protecting against DOX-induced cardiotoxicity. The cardioprotective effect of this combination therapy may be mediated in part through the restoration of mitochondrial function/biogenesis associated with the PGC-1α/NRF1/TFAM pathway, and suppression of inflammatory response.


Subject(s)
Cardiotoxicity , Nicotinamide Mononucleotide , Animals , Antibiotics, Antineoplastic/pharmacology , Apoptosis , Cardiotoxicity/drug therapy , Cardiotoxicity/prevention & control , Cytokines , Doxorubicin/toxicity , Hydroxyethylrutoside/analogs & derivatives , Male , Nicotinamide Mononucleotide/pharmacology , Organelle Biogenesis , Oxidative Stress , Rats , Rats, Wistar
14.
Can J Infect Dis Med Microbiol ; 2022: 3277274, 2022.
Article in English | MEDLINE | ID: mdl-35706715

ABSTRACT

Sepsis is defined as a life-threatening organ failure due to dysregulated host response to infection. Despite current advances in our knowledge about sepsis, it is still considered as a major global health challenge. Myocardial dysfunction is a well-defined manifestation of sepsis which is related to worse outcomes in septic patients. Given that the heart is a mitochondria-rich organ and the normal function of mitochondria is essential for successful modulation of septic response, the contribution of mitochondrial damage in sepsis-related myocardial dysfunction has attracted the attention of many scientists. It is widely accepted that mitochondrial damage is involved in sepsis-related myocardial dysfunction; however, effective and potential treatment modalities in clinical setting are still lacking. Mitochondrial-based therapies are potential approaches in sepsis treatment. Although various therapeutic strategies have been used for mitochondrial function improvement, their effects are limited when mitochondria undergo irreversible alterations under septic challenge. Therefore, application of more effective approaches such as mitochondrial transplantation has been suggested. This review highlights the crucial role of mitochondrial damage in sepsis-related myocardial dysfunction, then provides an overview on mitochondrial-based therapies and current approaches to mitochondrial transplantation as a novel strategy, and proposes future directions for more researches in this field.

15.
J Diabetes Metab Disord ; 21(1): 707-716, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35673476

ABSTRACT

Background: Prevention of lethal ventricular arrhythmias induced by myocardial ischemia/reperfusion (I/R) in diabetic patients is the major goal of cardioprotective strategies. Here, we aimed to examine the anti-arrhythmic effect of ischemic postconditioning (IPostC) and alpha-lipoic acid (ALA) in myocardial I/R injury of type-II diabetic rats, focusing on the involvement of connexin-43 and nitric oxide (NO) in this context. Methods: Diabetes (duration of 12 weeks) was induced by high-fat diet and low dose of streptozotocin in thirty male Wistar rats (12 weeks old, 200-250 g). After mounting the hearts on the Langendorff apparatus, I/R was induced by the ligation of left anterior descending coronary artery for 35 min, and reperfusion for 60 min. ALA (100 mg/kg/day) was administered orally in diabetic rats for five weeks before I/R. IPostC was applied immediately at early reperfusion. The arrhythmias were evaluated according to the Lambeth convention. Connexin-43 expression and NO levels were assessed by western blotting and Griess calorimetric method, respectively. Results: IPostC could not significantly decrease the number, duration, and incidence of premature ventricular contraction, ventricular tachycardia, and ventricular fibrillation, also the severity of arrhythmias in diabetic hearts. However, IPostC in combination with ALA-preconditioning significantly decreased the above mentioned parameters compared with untreated or monotherapies-received diabetic rats (P < 0.05 to P < 0.001). Furthermore, this combination therapy significantly increased connexin-43 expression and NO levels, compared with untreated diabetic rats (P < 0.01). Conclusion: Preconditioning with ALA restored anti-arrhythmic effect of IPostC in diabetic hearts. Increased connexin-43 expression and NO levels may be the key players in this cardioprotection.

16.
Mol Biol Rep ; 49(3): 1773-1782, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35098396

ABSTRACT

BACKGROUND: Investigating the interaction of diabetes with ischemic postconditioning (IPostC)-associated cardioprotection in myocardial ischemia/reperfusion (I/R) damage is of great clinical importance. The present work was designed to determine the possible synergistic effects of alpha-lipoic acid (LA) preconditioning and IPostC on myocardial I/R damage in type-II diabetic rats through modulating autophagy, and the involvement of mitochondrial function. METHODS: High-fat diet/low dose of streptozotocin-induced type-II diabetic model with duration of 12 weeks was used in this study. LA (100 mg/kg/day) was administered orally in diabetic rats for 5 weeks before I/R. Myocardial I/R was established on Langendorff apparatus through the ligation of left anterior descending coronary artery for 35 min, then reperfusion for 60 min. IPostC was carried out immediately at the beginning of the reperfusion. At the end of the experiment, myocardial infarct size (IS), autophagy markers at both gene and protein levels, and mitochondrial ROS production and membrane potential were assessed. RESULTS: Combined conditioning with LA and ischemia significantly decreased the IS of diabetic hearts (P < 0.05), however, single therapies had no significant effects. LA in combination with IPostC more significantly decreased LC3 and p62 mRNA levels (P < 0.01), and LC3II/LC3I and p62 protein levels (P < 0.01). Also, this combined therapy decreased mitochondrial ROS generation and membrane depolarization (P < 0.01). CONCLUSIONS: Pretreatment with LA in diabetic rats notably restored cardioprotection by IPostC via modulating autophagy and restoring mitochondrial function. This combined conditioning might be an effective strategy to diminish I/R damage in diabetic hearts.


Subject(s)
Diabetes Mellitus, Experimental , Ischemic Postconditioning , Ischemic Preconditioning, Myocardial , Myocardial Reperfusion Injury , Thioctic Acid , Animals , Autophagy , Diabetes Mellitus, Experimental/metabolism , Mitochondria/metabolism , Myocardial Reperfusion Injury/metabolism , Rats , Thioctic Acid/pharmacology
17.
Neurochem Res ; 47(2): 358-371, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34626305

ABSTRACT

Pathophysiology of depression in elderlies is linked to aging-associated increase in indoleamine 2,3-dioxygenase (IDO) levels and activity and kynurenine (Kyn) metabolites. Moreover, these aging-induced changes may alter the brain's responses to stress. Growing evidence suggested that young plasma can positively affect brain dysfunctions in old age. The present study aimed to investigate whether the antidepressant effects of young plasma administration in aged rats subjected to chronic unpredictable mild stress (CUMS) and underlying mechanisms, focusing on the prefrontal cortex (PFC). Young (3 months old) and aged (22 months old) male rats were divided into five groups; young control, aged control, aged rats subjected to CUMS (A + CUMS), aged rats subjected to CUMS and treated with young plasma (A + CUMS + YP), and aged rats subjected to CUMS and treated with old plasma (A + CUMS + OP). Plasma was injected (1 ml, intravenously) three times per week for four weeks. Young plasma significantly improved CUMS-induced depressive-like behaviors, evidenced by the increased sucrose consumption ratio in the sucrose preference test and the reduced immobility time in the forced swimming test. Furthermore, young plasma markedly reduced the levels of interferon-gamma (IFN-γ), IDO, Kyn, and Kyn to tryptophan (Kyn/Trp) ratio in PFC tissue. Expression levels of the serotonin transporter and growth-associated protein (GAP)-43 were also significantly increased after chronic administration of young plasma. These findings provide evidence for the antidepressant effect of young plasma in old age; however, whether it improves depressive behaviors or faster recovery from stress-induced deficits is required to be elucidated.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/metabolism , Disease Models, Animal , Hippocampus/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Male , Prefrontal Cortex/metabolism , Rats , Stress, Psychological/metabolism
18.
Life Sci ; 290: 120158, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34822798

ABSTRACT

Neutrophil extracellular trap (NETosis), the web-like structures induced by neutrophil death, is an important inflammatory mechanism of the immune system leading to reactive oxygen species production/coagulopathy, endothelial dysfunction, atherosclerosis, and ischemia. NETosis exerts its role through different mechanisms such as triggering Toll-like receptors, inflammatory cytokines, platelet aggregation, neutrophil activation/infiltration, and vascular impairment. NETosis plays a key role in the prognosis of coronary artery disease, ischemic injury of kidney, lung, gastrointestinal tract and skeletal muscles. In this review, we explored the molecular mechanisms involved in NETosis, and ischemic/reperfusion injuries in body organs.


Subject(s)
Extracellular Traps/immunology , Reperfusion Injury/immunology , Reperfusion Injury/metabolism , Extracellular Traps/metabolism , Extracellular Traps/physiology , Humans , Neutrophils/immunology , Reperfusion Injury/physiopathology
19.
Clin Exp Pharmacol Physiol ; 49(4): 474-482, 2022 04.
Article in English | MEDLINE | ID: mdl-34854121

ABSTRACT

The present study aims to evaluate the combined effect of ischaemic postconditioning (IPostC) and nicotinamide mononucleotide (NMN) on cardioprotection and mitochondrial function in aged rats subjected to myocardial ischaemia-reperfusion (IR) injury. Sixty aged Wistar rats were randomly divided into five groups (n = 12), including sham, control, NMN, IPostC, and NMN + IPostC. Regional ischaemia was induced by 30-min occlusion of the left anterior descending coronary artery (LAD) followed by 60-min reperfusion. IPostC was applied at the onset of reperfusion, by six cycles of 10-s reperfusion/ischaemia. NMN (100 mg/kg) was intraperitoneally injected every other day for 28 days before IR. Myocardial haemodynamics and infarct size (IS) were measured, and the left ventricles samples were harvested to assess cardiac mitochondrial function. The results showed that all treatments reduced lactate dehydrogenase release compared to those of the control group. IPostC alone failed to reduce IS and myocardial function. However, NMN and combined therapy could significantly improve myocardial function and decrease the IS compared to the control animals. Moreover, the effects of combined therapy on the decrease of IS, mitochondrial reactive oxygen species (ROS), and improvement of mitochondrial membrane potential (MMP) were greater than those of stand-alone treatments. These results demonstrated that cardioprotection by combined therapy with NMN + IPostC was superior to individual treatments, and pretreatment of aged rats with NMN was able to correct the failure of IPostC in protecting the hearts of aged rats against IR injury.


Subject(s)
Ischemic Postconditioning , Myocardial Reperfusion Injury , Reperfusion Injury , Animals , Ischemic Postconditioning/methods , Mitochondria , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Mononucleotide/therapeutic use , Rats , Rats, Wistar
20.
J Physiol Biochem ; 77(3): 377-404, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34173955

ABSTRACT

Despite remarkable advances in our knowledge about the function of autophagy in myocardial ischemia/reperfusion (I/R) injury, the debate continues over whether autophagy is protective or deleterious in cardiac I/R. Due to the complexity of autophagy signaling, autophagy can play a dual role in the pathological processes of myocardial I/R injury. Thus, more researches are needed to shed light on the complex roles of autophagy in cardioprotection for the future clinical development. Such researches can lead to the finding of new therapeutic strategies for improving cardiac I/R outcomes in patients. Several preclinical studies have targeted autophagy flux as a beneficial strategy against myocardial I/R injury. In this review, we aimed to discuss the complex contribution of autophagy in myocardial I/R injury, as well as the therapeutic agents that have been shown to be useful in reducing myocardial I/R injury by targeting autophagy. For this reason, we provided an updated summary of the data from in vivo, ex vivo, and in vitro experimental studies about the therapeutic agents that exert positive effects against myocardial I/R injury by modulating autophagy flux. By addressing these valuable studies, we try to provide a motivation for the promising hypothesis of "autophagy modulation as a therapeutic strategy against cardiac I/R" in the future clinical studies.


Subject(s)
Autophagy , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac , Animals , Cell Line , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...